4. (a) Prove that:

$$
(\mathrm{p} \rightarrow \mathrm{r}) \vee(\mathrm{q} \rightarrow \mathrm{~s})=(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{r} \vee \mathrm{~s})
$$

(b) Construct the truth table for $(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{P})$.
5. State and prove fundamental theorem of semi group homomorphism.
6. Define monoids with examples. Let ($\mathrm{G},{ }^{*}$) and ($\mathrm{G}^{\prime}, \mathrm{o}$) be monoids with identities e and i respectively. Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a homomorphism from ($\mathrm{G},{ }^{*}$) onto $\left(\mathrm{G}^{\prime}, \mathrm{o}\right)$ then $\mathrm{f}(\mathrm{e})=\mathrm{i}$.
7. (a) By finding the generating function of sequence $\mathrm{S}(\mathrm{n})$, find solution of recurrence relation.
$S(n)-2 S(n-1)-3 S(n-2)=0$, for $n \geq 2$, given $S(0)=3, S(1)=1$.
(b) Define the Fibonacci sequence and find its closed form expression.
8. (a) Solve the recurrence relation :

$$
\begin{aligned}
& \mathrm{S}(\mathrm{k})-7 \mathrm{~S}(\mathrm{k}-2)+6 \mathrm{~S}(\mathrm{k}-3)=0, \mathrm{~S}(0)=8, \\
& \mathrm{~S}(1)=6, \mathrm{~S}(2)=22
\end{aligned}
$$

(b) Solve the recurrence relation

$$
\begin{aligned}
& \mathrm{S}(\mathrm{k})+5 \mathrm{~S}(\mathrm{k}-1)+6 \mathrm{~S}(\mathrm{k}-2)=\mathrm{f}(\mathrm{~K}), \\
& \text { where } \mathrm{f}(\mathrm{~K})=\left\{\begin{array}{ll}
0, & \mathrm{k}=0,1,5 \\
6, & \text { otherwise }
\end{array}\right. \text { given that } \\
& \mathrm{S}(0)=\mathrm{S}(1)=2 .
\end{aligned}
$$

