4. (a) Prove that :
P®nNU@®s)=(pUq® (rUs)
(b) Construct the truth table for (P ® Q) U(Q ® P).
5. State and prove fundamental theorem of semi group
homomorphism.
6. Define monoids with examples. Let (G, *) and (G', 0)
be monoids with identities e and i respectively. Let
f: G ® G’'be a homomorphism from (G, *) onto
(G', 0) then f(e) = 1.
7. (a) By finding the generating function of sequence
S(n), find solution of recurrence relation.
S(n) —2S(n—-1) —=3S(n—-2)=0, forn 3 2, given
S(0) = 3, S(1) = 1.
(b) Define the Fibonacci sequence and find its closed
form expression.
8. (a) Solve the recurrence relation :
S(k) — 7S(k — 2) + 6S(k — 3) = 0, S(0) = 8,
S(1) = 6, S(2) = 22
(b) Solve the recurrence relation
S(k) + 5S(k — 1) + 6S(k — 2) = f(K),

) {0 i0, k=0,1,5 .
=i ., that

wnere ’:‘6, otherwise given a
S(0) = S(1) = 2.
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1. (a)
(b)
2. (a)
(b)
3. (a)
(b)

Candidates are required to attempt any
FOUR questions.

Define partial ordered set and totally ordered
set. What are the differences between them ?
Give two examples of each.

Prove that distinct equivalence classes of an
equivalence relation on a set form a partition of
the set.

State and prove extended form of pigeonhole
principle. Give an example of it.

Find the number of the positive integers from
1 to 500 which are divisible by at least one of
3, 5 and 7.

Define Conditional and Biconditional operators.
Give three examples of both each.

Prove that (p Uq) ® (p U q) is tautology but
pUq ® (pUQq) is not.
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